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Abstract. The consequences of the Lee and Yang representation for a ferromagnetic king 
model are reviewed. Bounds for the Lee and Yang angle are given and the critical magnetic 
behaviour is analysed. A main result is that we deduce identities for the Mayer-Yvon 
coefficients, which lead to introduce the expansion of the magnetization with respect to the 
variable (1 - tanh’ BH). This expansion appears to exhibit remarkable positivity properties 
and the corresponding coefficients are tabulated. A central role is played by the Bethe 
lattice which is completely analysed, since its coefficients seem to give upper bounds for the 
more realistic regular lattices. 

1. Introduction 

In 1952, Lee and Yang found the location, in the complex activity plane, of the zeros of 
the grand partition function of a lattice gas model, equivalent to a ferromagnetic Ising 
model (Lee and Yang 1952a, b). From this result they derived an integral representa- 
tion satisfied by the intensity of magnetization. 

This representation involves a positive measure interpreted as the density of zeros in 
the corresponding activity variable of the partition function. 

Except for the one-dimensional case, little is known about the precise structure of 
this measure, although most work has been devoted to extracting, from the representa- 
tion considered, information about the physical behaviour of the system. In particular 
inequalities for the critical indices have been deduced by Baker (1968), Gaunt and 
Baker (1970) (see also Griffiths 1974). The behaviour of the measure near the critical 
point has been analysed by Abe (1967, pp 72,322) and Suzuki (1967, pp 1225,1243) 
although the question concerning the analyticity properties near the critical point, the 
so called Grif€iths (1967) analyticity remains to be embedded in the measure. 

Our first line of research was to look for a reconstruction method of the measure 
from knowledge of the trigonometrical coefficients, i.e. the Mayer-Yvon coefficients 
appearing when expanding in the activity variable. The singular character of the 
measure suggests that we consider first the dominant singular part which characterizes 
the critical behaviour and then add less singular contributions, all terms being suitably 
parametrized. 

The idea is then to fix the different parameters occurring in the measure from our 
knowledge of the low-order coefficients. We think that such a programme should be 
workable because it has been possible by standard methods (‘ratio’ method or Pad6 
approximants) to compute the critical behaviour with high accuracy from the set of 
coefficients now available (see Gaunt and Guttmann 1974). 
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This programme is in progress, but it appears to be very difficult to set up. We have 
also tried first to explore more systematically a certain number of topics related to the 
existence of the Lee-Yang representation, concerning in particular the Lee-Yang angle 
and the coefficients of the Mayer-Yvon expansion. 

In 0 2 we give a summary of our notation and we recall previous results. In § 3, sets 
of monotonically decreasing upper bounds for the Lee-Yang angle are recovered from 
the Mayer-Yvon coefficients and a useful lower bound is recalled. In § 4 we discuss a 
simple sufficiency condition which must be fulfilled by the measure in order to recover 
the linear law for the critical magnetic indices. 

Section 5 is devoted to identities satisfied by the Mayer-Yvon coefficients. These 
identities are induced by the positivity of the measure as well as by its support 
properties, some linear combinations of the Mayer-Yvon coefficients are introduced 
and related to the expansion in the variable 1 - tanh2PH. 

In 9 6, we analyse completely, from the viewpoint of its analytic structure in the 
activity complex plane, the Bethe lattice, for which we show that our previous identities 
entirely fix the solution in this simple case. Explicit expressions for the Mayer-Yvon 
coefficients are given in terms of classical polynomials. 

Finally, in § 7 we have performed a numerical investigation, using formal languages, 
of the most usual lattices. This investigation is based on a linear transformation done on 
the Mayer-Yvon coefficients as indicated in § 5 .  New positivity conjectures are very 
strongly suggested by the inspection of the new coefficients computed to the highest 
available orders. 

2. Definitions and notations 

We shall consider a ferromagnetic king model on a lattice in dimension d,  with c nearest 
neighbours, for which the Lee-Yang representation is valid (Lee and Yang 1952a, b). 
Since most of our results are based on this representation, these results clearly extend 
to systems for which this representation is true; but for clarity we shall stick to this one 
case. 

The Hamiltonian reads: 

E =  - JC~~V, -HCC,  J>O, (2.1) 

the first sum being performed on nearest-neighbours pairs and the second one on all 
sites of the lattice. We introduce the notation: 

-2PJ x = e  O G x S l  

z = e  -2aH 

where H is the magnetic field. The thermodynamical functions satisfy the following 
representations. The free energy per site is given by: 

PF= -pH-' ,c@J-l  1n(r2-22 COS e+ l )g (e ,x )de .  ( 2 . 3 ~ )  
7r 

s o w  

The intensity of magnetization is given by: 

(2.3b) 
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eo(x )  is the Lee-Yang angle, g(8, x )  is a positive measure since it is the density of zeros 
(on the unit circle in the complex plane of the variable 2) of the grand partition function 
in the thermodynamic limit. The measure g is normalized as: 

g(8, x )  de =$, I" eo(x) 

Z(z, x )  satisfies the symmetry property: 

( 2 . 3 ~ )  

Z(2, X I  = -I(l/z, x ) ,  (2.4) 

which shows the symmetry of the system on reversing the magnetic field. 

magnetization is given by: 
Using the Poisson formula (see SzCgo 1939, chap. lo), we see that the spontaneous 

M ( x )  = lim I ( z ,  x )  = 27rg(O, x )  (2.5) 
H 4 3 +  

and that the susceptibility ~ ( x )  is: 

The critical temperature is given by 8,(xc) = 0. At x > x c ,  g(0,  x) = 0 which implies 
M ( x )  = 0, there is no spontaneous magnetization and: 

Let us consider for x > x ,  the higher-order derivatives 

(2.7) 

Derivatives with respect to H of even order are identically zero. By re-expressing 
Z(z, x )  in terms of the magnetic field H, we can write: 

I(H, x )  = i le: g(8, x )  de [cot(&3+iPH)+cot(-~efipH)] (2.9) 

and owing to the fact that the successive derivatives of cot y are polynomials in the 
variable l/sin2y, we see that: 

where Q k ( x )  is a polynomial of degree k in y defined by: 

Equation (2.9) can also be written as: 

(2.10) 

(2.11) 

( 2 . 1 1 ~ )  
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Let us consider now the Mayer-Yvon expansion which can be obtained by expanding 
I(z,  x)  around z = 0: 

I ( z ,  x) = 1-2  UcI(X)Z' 
1 2 1  

(2.12) 

with 

(2.13) 

Equation (2,13) defines a trigonometrical moment problem. The trigonometrical 
moments have the following properties (Domb 1974): 

(i) &(x) = xc, c is the number of nearest neighbours. 
(ii) &(x) is a polynomial of degree IC in x, the parity of which is the parity of its 

(iii) The term of minimal degree in &(x) is of degree: 
highest-degree term. 

N (  1) = l(c - 2) + 2 - L, (2.14) 

where the integer L can be defined in the following way. Given 1 points in the lattice, 
join all nearest neighbours taken among those and count the number of independent 
loops of the diagram obtained. L is the supremum of this number for all possible 
choices of the 1 points (clearly this supremum is achieved for a connected diagram). 

(iv) The trigonometrical moment of order zero is: 

(2.15) 

3. Bounds for the Lee-Yang angle 

3.1. Upper bounds for the Lee- Yang angle 

To obtain upper bounds for the Lee-Yang angle d,(x), we first transform the 
trigonometrical moment problem: 

into a proper moment problem defined by: 
71 

,xl(x) = I g(0 ,  x)(cos2$d)' de, 
eo(x ) 

we have the relations for 12 1 :  

(3.1) 

(3.2) 

(3.4) 
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setting t = cos2i0 in (3.2), we consider the Hausdorf moment problem on the finite 
interval (0, cos2$eo) 

From the knowledge of only the first 21 moments po(x), p l ( x ) .  . . pzI- l (x) ,  we can 
construct the set of orthogonal polynomials I'Ij"'(t) with respect to the measure g ( f ,  x ) ;  
these are the denominators of the Pad6 approximations built up on the moments pI 

(3.9) 

All the zeros of these polynomials l l j" ' ( f )  belong to the support of the measure g(f, x )  
(see SzCgo 1939, chap. 3), that is to the interval (0, cos2$80). Therefore the largest zero 
of @'(t) is a lower bound to cos2$Oo. Furthermore, the zeros of IIj"'(t) and I'Ilx?,(t) 
interlace, and therefore the sequence of largest zeros forms a monotonically increasing 
set of converging lower bounds to cos2$30. For instance 

(3.10) 

from which we deduce 

- - x c  <COS eo. (3.11) 

To compute n:"'(t), it is necessary to know p3(x), but p3(x) depends explicitly on the 
lattice, and therefore each lattice gives rise to a specific bound. 

Those bounds for the angle eo, although monotonically converging in 1 are poor at 
low temperature (for temperature zero they only decrease like m/l).  However they 
become close to saturation when the temperature is sufficiently high. 

3.2. Lower bound for the Lee-Yang angle 

We shall see, in the following, that we need a lower bound for the Lee-Yang angle. To 
obtain it we use the results of Ruelle (1971, 1973). 

The intensity of magnetization may have its singularities in the z plane, for fixed x ,  
only in the domain 0, of the complex z plane defined by: 

0, = (6; such that 6 = -(-zl)(-z2) . . . (-tc)}, (3.12) 
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where zi E D  which is defined by 
Jx+zi I< ( l -x  2 ) ID.  , 

D, can also be described by: 

(3.13) 

0, = { 6, such that tl/' = x [ -( -:) (-:) . . . (- :)] '''1 (3.14) 

where 11 + (zi/x)\< (1 - x ~ ) ~ / ~ / x .  Setting zl= zi /x ,  we see that when x > 1/J2, the circle 
11 +z:I < (1 - x 2 )  /2/x is of radius smaller than 1, and therefore the mean geometrical 
value is again inside the circle ( c )  of centre (-1) and radius (1 -x2)'I2/x, that is: 

w = [ - ( -z:)(-z;)  . . . (-2:)11/" 

11 +U1 < (1 -x2)ll2/x. (3.15) 

This is best seen by taking the logarithms of the various expressions and transform- 
ing the geometrical mean into an arithmetical mean, and by noticing that the image of 
the circle (c) considered is convex. 

It then follows that D, is the image by 5 = zc  of the circle 

Ix + z 1 < ( 1 - x 2, 12. (3.16) 

Setting 

x = sin(*/2) OS*S.rr, (3.17) 

we get the bound (for x > 1/42): 

- e0s (T - IC/) * > T/2. (3.18) 

It is interesting to notice that I(/ has a physical interpretation as the Lee-Yang angle for 
the one-dimensional Ising model c -- 2. At the point II/ = T (x = 1 infinite temperature), 
the upper bound (3.11) and the lower bound (3.18) give the same value &=T. 
However, the slopes are different for the two bounds. In fact we obtain: 

(3.19) 

These bounds will be useful in the study of the behaviour of the Mayer-Yvon 
coefficients .&(x). 

4. A suflticiency condition for the critical magnetic indices to satisfy a linear law 

As observed by Lee and Yang, the critical temperature is reached when e&) goes to 
zero. Using x as temperature scale we have at the critical point: 

eo(xc) = 0. (4.1) 
Following Gaunt and Baker (1970) and Griffiths (1974) we introduce A in order to 

describe how the critical angle goes to zero when we approach the critical temperature 
from above: 

e&) -A ( X  - x ~ ) ~  x +xz, A a O .  (4.2) 
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The magnetic susceptibilities introduced in (2.7) and (2.8) go to infinity. They behave 
like (Fisher 1967) 

yk ( x )  -Bk ( x  - X C ) - ' ~  y k  3 0 .  (4.3) 

From formula (2.10) it is clear that the behaviour for x + x,' of , y k - l ( x )  and of the 
negatives moments defined by: 

(4.4) 

are governed by the same critical indices. 

3/k satisfy the convexity relation for any k 3 0: 
It was proved by Baker (1968) and Gaunt and Baker (1970) that the critical indices 

3/k +2 - 2yk + 1 + y k  a 0, (4.5) 

Yk s Y k + i  Yk +U. (4.6) 

as well as 

These two inequalities are consequences of the positivity of the measure but they are 
not sufficient to impose the linear law: 

y k  = Y0+2kA9 (4.7) 
which can be also considered as a consequence of scaling laws (Fisher 1967). 

In fact we can remark that: 
(i) if yo and y 1  satisfy the relation (4.7), i.e. 

Y 1 =  Y O + W  (4.8) 
then the linear law is true for any k. This result is a straightforward consequence of the 
combination of inequalities (4.5) and (4.6). 

(ii) If we assume that there exist positive numbers P and C fixed such that in the 
vicinity of the critical point: x , < x  < x , + E ,  we have: 

(this means that the interval (eo, Pea) which shrinks to a point as x + x c ,  gives a 
contribution at least as important as the remainder, to the critical behaviour of the 
susceptibility), then the positivity allows us to write: 

Using definition (4.4) we deduce: 

which gives 

yo+ 2A 71 yo+ 2A, 

the relation (4.8) then holds, and as a consequence so also does (4.7). 

(4.10) 
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In fact it should be noticed that taking into account the normalization condition 
(2.3c), the integral g dB/sin2i0 remains finite for any q fixed as small as one likes. 
Then only the contribution from the vicinity of Bo is important for the singular critical 
behaviour; the condition (4.9) makes this statement precise. One can check that 
representations such as those suggested by Abe (1967, pp 72,322) or Suzuki (1967, pp 
1225, 1243) satisfy our requirement. The difficult problem of reconstructing the 
measure and analysing its behaviour from the knowledge of the moments requires a 
detailed investigation of the moments themselves. In particular the consequences for 
the moments of the positivity of the measure will be analyzed in the next section. 

5. Identities satisfied by the Mayer-Yvon coefficient, resulting from the positivity of 
the Lee-Yang measure 

Consider the proper moments of the measure g(0 ,  x ) :  
n 

pLI(x) = I,, g(e, x)(cos2ie)’ de. (5.1) 

From the transformation laws (3.3) and the property of the trigonometrical moments 
defined in (3.1) we see that pI(x) is a polynomial of order fc as isA,(x). In 0 2, we have 
seen that & ( x )  is exactly divisible by xN(‘ ) ,  where N(Z) depends on the lattice and 
satisfies (see (2.14)) 

N(Z) = I(c - 2) + 2 - L. (5.2) 

Additional information on the moments is provided by the following theorem. 

Theorem. pI(x) is exactly divisible by (1 - x) ’ .  

Proof. Since g(8 ,  x )  is positive, we deduce from (5.1) 

0 P ~ + ~ ( X )  w (XI cos2+eo P, (XI, (5.3) 

the proof will be completed by induction. 
First pl (x )=$ ( l -xc )  is divisible by (1-x). Then assuming pk(x)  divisible by 

( l - ~ ) ~  (for k = 1, . . . , Z), from OSg,+l(x)SpI(x)  we deduce that P / + ~ ( X )  is at least 
divisible by (1 - x ) ’ .  Now we write 

(5.4) 

where RI and RI+1 are polynomials as is p l + l .  But (5.3) gives us 

(5 .5 )  

The bounds (3.18) on the Lee-Yang angle eo show that eo(x )  tends continuously 
must vanish once at x = 1, and p.l+l is divisible by 

21 OsR/+1SR/ COS 300. 

towards 7r when x + 1. Therefore 
(1 -x)’+l. The property is then true for all I ;  thus the theorem is proved. 

This theorem clearly extends to any model for which the zeros of the partition function 
stay on an interval of some line of the complex activity plane, which shrinks to the point 
z =-i when x - ,  1.  
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Now we remark that if in (5.2) L were zero, Al(x) which is of parity IC,  would be 
divisible by x ’ ( ‘ - ~ ) + ~  and therefore would depend only on 1 coefficients. But the 
corresponding pI(x) have to be divisible by (1 - x ) ’ ,  which gives 1 different conditions. 
Therefore for such a hypothesis ( L  = 0), the polynomials Al(x) (or p,(x)) are com- 
pletely determined by the factorization property of Al at x = 0 and of p I  at x = 1 .  In the 
following we will call these polynomials tree polynomials or Bethe polynomials, since 
we can generate them by the Bethe approximation-or equivalently by solving an Ising 
model on a Bethe lattice. This will be explained in detail in the next section. 

In more physical cases than the Bethe lattice (for instance any regular lattice in more 
than one dimension), we can draw on the lattice diagrams with loops. Then, as indicated 
at the end of 0 2, we can factorize only a smaller power xN(’ )  in A,(x). Therefore it 
appears that A’ (or p l )  depends only on L different parameters. 

In any case we shall define 4 ( x )  by: 

4’pl(X) = ( I  - X ) ’ p l ( X ) .  (5.6) 

When c is even, the pI(x)  are even polynomials in x .  Then we can factorize (1 -x2)’. For 
c even, we define S ( u )  by: 

(5.7) 2 ~ ‘ ~ I ( X ) = ( ~ - X ~ ) ~ P ~ ( U )  u = x .  

In all explicit examples we have computed, we have furthermore noticed that both for 
Pl(x)  in the odd c case and Pl(u) ,  in the even case, all their coefficients are integers and 
positive. We have no explanation for this surprising fact since it reveals positivity 
properties of the expansion of the free energy and not as usual of the partition function. 
This positivity conjecture has been checked for many lattices, up to the highest order 
available (see 0 7 ) .  

We can connect the moment pI (x)  to the expansion of the free energy or the 
intensity of magnetization in the variable (Wall 1967): 

= 1 - tanh2pH. 
42 1 U=-- 

(1 + z ) ~  - cosh2PH 

From (2 .3a)  and (2.3b) we deduce: 

(5.9) 
U‘ 
-p1(x) 

‘ 2 1  1 
p ~ - $  In f u  + $ c p ~  = - ln(1 - u  cos2$e)g(e, x )  de = 

I =  --=2(1-u)’/2 aF 
aH 

Note that (1 - u ) l l 2  = tanh PH is the magnetization for zero coupling J. In this case 

The factorization properties of the pl allow us to write: 
the only remaining term in the last sum is po = i. 

W 

/ tanhBH [ u ( l  - x ) ] ’ S : ( x )  c odd 
I = O  

I = {  (5.11) 
2 I tanhPH f [ ~ ( l - u ) ] ~ P ~ ( u )  c even, U = x  . 

I = O  
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Due to the fact that the Mayer-Yvon coefficients vanish strongly at the origin, it is 
easy to compute the lowest powers of & ( x )  from the transformation law (3 .3) .  For 
example the four lowest terms of PI(u) for the square lattice in two dimensions are given 
by (as well as for the c = 4 Bethe lattice as shown in the next section): 

+ u , ( f + 2 ) ( 1 + 3 )  
4 

( I  + 3)(12+91 + 2 6 )  21 
+ U  12 ( [ - 3 ) + * .  . . (5.12) 

The square lattice and the Bethe c = 4 lattice differ only at the fourth order. The 
diamond lattice and the Bethe (c = 4 )  lattice will similarly differ only at sixth order 
because the first loop diagram can only appear at such an order. 

6. Analysis of the Bethe lattice 

6.1. Introduction 

The Bethe lattice is defined as an infinite lattice without loops such that each site has c 
nearest neighbours. The Hamiltonian is still given by (2.1). The partition function of 
such a lattice system can be computed by the following trick (Domb 1960, p 149). Take 
one particular site and its c nearest neighbours. Consider the isolated system built with 
the (c  + 1 )  corresponding spins. The magnetic field H is applied on the central spin and 
the external spins are embedded in a different effective magnetic field H, ,  which can be 
fixed in order that the mean values of the central and the external spins are equal, 
assuming still that spins of neighbouring pairs contribute with the factor -J to the 
Hamiltonian as in (2.1).  

Setting 

(6 .1)  - 2 p f  x = e  , - 2 P H  -@Hi z = e  z l = e  

one gets after some calculation: 

z = e--PF = Z - ~ / ~ ( X Z ~ > - ' / ~ [ ( ~  +xz l ) '  + z ( x  +zl)'] (6 .2)  

where z1 is related to z by the algebraic equation: 

When t = 0, z1 is chosen as z1 = 0 and for z f 0 we must select the corresponding root 
by continuity. 

It is convenient to introduce the variable: 

q5=-. 1 + x z ,  

z = q5=-. q5-l-x 

x + z *  

For z = 0, q5 = x- '  and is defined by continuity for z # 0. q5 satisfies: 

d - X  

(6 .4)  

(6 .5)  
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The intensity of magnetization is then given by: 

22 =I-- c$z- 1 
4 - 24x + 1 

I =  += +z‘  

6.2. The case c = 2 

For c = 2 we recover the solution of the Ising model in one dimension; the intensity of 
magnetization is given by: 

1-2 I =  [z’- 22(1- 2x2) + 1]1’2’ 

or equivalently: 
-1/2 1-2  42 

I = (-)( 1 --(1 -x2)) . 
l + z  ( l + z ) 2  

By using the generating function of Legendre polynomials we can expand (6.7) in 
powers of 2: 

W 

I= 1+ z~(P , (1 -2x2) -P“~~(1 -2x2) ) ,  
n = l  

and thus by comparison with (2.12), we get for 1 2  1: 

c = 2 :  -2L&(X) = PI(1 -2x2)-P,-1(1 -2x2). 

Expanding (6.8) in powers of U = 4z/(1+ z ) ~  gives: 

and thus we get (see (5.10)) 

(6.9) 

(6.10) 

(6.11) 

6.3. Analytic structure of the solution 

When c is greater than 2, the Ising model on a Bethe lattice exhibits a phase transition 
because the point z = 1 (zero magnetic field) becomes a singular point for the function 
4 ( z )  defined by (6.5), for a value of x different from zero. 

A careful but straightforward analysis of the analytic structure of + ( z )  at fixed x 
gives the following results. 

The singular points of + ( z )  are z = 0, z = 00 and the two points z(+*) where q5* are 
solution of the equation: 

x2c + c - 2 
+ 1 = 0 .  dJ*+$J x(1-c) (6.12) 

If this equation is satisfied, dz/d4 as derived from (6.5) vanishes. When 
1 - 2 / c  zs x s 1, the solutions c$* are complex conjugate numbers with modulus one. 
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When 0 6 x s 1 - 2/c, they become real positive and inverse from each other. The 
critical temperature is thus given by 

2 x =I- -  
c' 

(6.13) 

Knowing the singularities of 4, we must select the correct sheet by continuity from 
+(z  = 0) = l/x. From (6.6) we get the analytic structure of the function Z(z). The result 
is: 

(i) When x > xc : Z(z) is analytic in the complex plane cut along an arc of the Iz) = 1 
circle containing the point (-1) and limited by the points z(@*) which are also complex 
conjugate of modulus one. The point z = 1 is inside the domain of analyticity and there 
is no spontaneous magnetization. Due to the relation 

I ( z )  = - I ( Z - l )  = -I(,?*), (6.14a) 

when Iz( = 1, we see that the discontinuity along the cut is purely real and it can be 
shown that it never vanishes except at the end points of the cut. The discontinuity has 
therefore a definite sign and I ( z )  admits a Lee-Yang-type representation. The angle 
&(x) is given by: 

e&> = Arg z ( 4 + ( x ) ) ,  (6.15) 

from (6.12) and (6.5) we can prove that the bound (3.18) is also satisfied. 
(ii) When x < x, the function I ( r )  is split into two different functions: I + ( z )  defined 

for /zI < 1 and I&) defined for z > 1. For the Bethe lattice, I+(z )  can be analytically 
continued outside /zI = 1 into the z plane cut along the real axis from z (4+)  to o;, where 
4+ is the greatest root of equation (6.12). The point ~ ( 4 , )  increases from one to infinity 
when x decreases from x, to zero. The discontinuity of I + ( z )  across the cut is purely 
imaginary and does not change sign. As a consequence the function r+(z )  defined by: 

(6.16) 

is a Stieltjes function in z .  The definition and properties of Stieltjes functions can be 
found in Baker (1975, chap. 15). 

I+(,?) = 1 - 2 2 + ( 2 ) ,  

The properties of Z-(z) are deduced from 

I-(z) = -I+(l/z). (6.14b) 

The analytic properties of the intensity of magnetization which has four singular points 
(O,W, z + ,  2-) are best visualized in figures 1 and 2. 

t = 

Figure 1. The analytic properties of I ( z ,  x )  in the Bethe lattice for x >xc. 



Positivity constraints for the Zsing ferromagnetic model 2117 

t = 
/ Ef fec t i ve  singularities 

Figure 2. The analytic properties of Z(z, x )  in the Bethe lattice for x e x , .  

The property that f+(z) be a Stieltjes function does not extend to the realistic 
lattices, because it can be shown by computing some low-order Hadamard determin- 
ants that I + ( z , x ) ,  which is a Stieltjes function for the Bethe lattice, cannot be 
analytically continued any further into a Stieltjes function for the realistic case of a 
regular lattice (square lattice in two dimension for instance). For the Bethe lattice, it is 
interesting to remark that the poles of I ( + )  = (4'- l)/(q52- 24x + 1) do not appear in 
the corresponding physical Riemann sheet but can only be encountered after turning 
around the singularities z(&). However, there is an exception to this statement in the 
case c = 2, where these poles coincide with the beginning of the cut. As a consequence, 
the behaviour of the discontinuity (i.e. the measure of Lee and Yang) near the end point 
of the cut is different for x > x , :  

1 

(6.17) 

Analysis of the critical behaviour of the intensity of magnetization shows that its critical 
indices are classical (i.e. given by the Landau theory). From the universality point of 
view, the Bethe lattice can be considered as a limiting case when the dimension of the 
space goes to infinity. 

6.4. Mayer- Yvon expansion for the Bethe lattice 

It is possible to compute the expansion of Z(+(z ) )  in powers of z by means of contour 
integration. Writing: 

00 

I(2, x )  = 1 - 22f(z, x )  I ( z , x ) =  IWI1,Zn-l 
n 3 l  

we get: 

where the contour is a small circle around zero. 
From (6.8) we obtain: 

(6.18) 

(6.19) 

1 
I(2, x )  = - 

bC + z '  (6.20) 
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Taking 5 = x 4  as variable of integration instead of z,  we get after some algebraic 
computation: 

d n  = x ~ ( ~ - ~ ) + ~  Rn, (6.21) 

with 

dr5-nc+n-1 27ri 
(6.22) 

Expanding the first integral gives rise to Jacobi polynomials in the variable (1 -2x2) 
while the expansion of the second integral gives products of Tchebicheff polynomials of 
the second kind and Jacobi polynomials (we use Bateman’s 1953 conventions). 

The final result is: 

(6.23) 

Equation (6.23) gives the general solution of the problem mentioned in 0 5 :  that of 
determining the polynomials An (x) of degree nc, having a definite parity (even or odd 
according to the parity of nc) ,  in which we can factorize x ~ ( ~ - ~ ) + ~  , and such that the 
corresponding proper moments pl(x) vanish like (1 - x)’ when x goes to 1. It is easy to 
verify that when c = 2, formulae (6.23) and (6.10) are equivalent. 

7. Numerical investigations for the most usual lattices, and resulting positivity 
conjectures 

In this section we will first report the lowest-order expressions of the proper moments 
(defined in (5.1)) p l ( x )  for several lattices. 

For the Bethe lattices, direct calculations have been performed by solving the linear 
system deduced from the constraints indicated in 0 5 :  taking as unknown the n 
independent coefficients appearing in nAn (x), we first express pn (x) in terms of those 
unknowns by performing the linear transformation (3.3), and then we require pn(x) to 
vanish as (1-x)”. Using equations (5.6) and (5.7) we have tabulated the resulting 
polynomials ! P l ( x )  for c = 3, and &(U) for c = 4 and 6. 

We have also computed the corresponding polynomials 9’‘ ( x )  for the honeycomb 
lattice (c  = 3, dimension 2), and S ( u )  for simple quadratic (c  =4 ,  dimension 2), 
diamond (c = 4, dimension 3) triangular (c = 6, dimension 2) and simple cubic (c = 6, 
dimension 3) lattices. We have used the tables given by Sykes et a1 (1973) and 
performed the transformation (2.3). Here we give tables for the difference A ~ [ ( X )  (or 
APl(u)) for the realistic associated lattices between the polynomials of the Bethe lattice 
and the corresponding polynomial of the realistic lattice (tables 1-8). 

All calculations involving only integers are made exactly with formal languages. 
Analysis of tables 1-8 leads to the following observations. 
(i) All coefficients of the polynomials considered are positive integers. This leads to 

the following conjecture: the partial derivatives at the origin of the function 
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Table 1. Coefficient P,(x) for the Bethe lattice (c = 3). 

~~ ~ ~~ ____ 

P1(x) = x2+x  + 1 
P ~ ( x )  = 4x4 + 8x3 + 9x2 + 6x + 3 
P3(x) = 19x6+ 57x' + 87x4+85x3 + 6Oxz+ 30x + 10 
P4(x) = 98x8+ 392x7+ 776x6+992xs + 917x4 f644x' +350x2 + 1 4 0 ~  + 35 
Ps(x) = 531x1'+ 2655x'+ 6510x8+ 1 0 3 3 0 ~ ~  + 1 1885x6+ 10521x'+ 7 4 1 0 ~ ~  +4200x3 + 1890x2+630~ 

P6(x) = 2974xI2+ 17844x l 1  + 5 2 3 4 7 ~  l o  + 9953Ox'f 137565xs+ 1 4 7 0 2 4 ~ ~  + 126159x6+889O2x' 

P7(x)  = 17O60xl4+ 119420x13+408464x12+906892xi'+ 1467O67x1O+ 1841035x'+ 1863435~' 

+ 126 

+ 5 1975x4+ 25080~'  + 9702x2+2772x +462 

+ 1560819x7+ 1099917x6+657657x5+333333x4+ 141141x3+48O48x2+ 12012x 
+I716 

P8(x) = 99658~'~+797264x' '+ 31 1 7 6 4 8 ~ ' ~  +792568Oxl3 + 14710640~ 12+ 21234192~ l 1  

+ 24798256~ lo + 2 4 0 6 5 6 0 0 ~ ~  + 19772325x8+ 13927720x7+ 847 1372x6 + 4453 176x' 
+ 2 0 0 8 0 0 6 ~ ~  + 760760x3+ 2 3 1 6 6 0 ~ ~  + 5 1480x +6435 

+ 304474884~ ''+ 336235572~ 
+ 1 107 1 5696x7 + 5 9 8 7 0 3 2 8 ~ ~  + 2829 1536x ' + 1 1544 1 56x4 + 3967392~ + 1093950~ * 
+218790x+24310 

P Y ( x )  = 5 9 0 5 6 3 ~ ' ~  +5315067~~~+23400216x l6 + 67072980x1'+ 140622678~ l4 +229768182x '' 
+ 3 155 1 0 0 5 7 ~ ' ~ +  255152065xy+ 179606394x8+ 

Table 2. Coefficient P,(u) for the Bethe lattice (c = 4). 

P l ( U )  = U + 1 
P2(u) = 5u2 +6u + 3 
P3(u)=31u3+45uz+30u+10 
P4(u)=213u4+364u3+294u2+140u+35 
Ps(u) = 1556u5+3060u4+2880u3+ 1680u2+630u + 126 
P6(u)  = 11843u6+ 26334uS+ 28215u4+ 19140~ '  +8910u2+2772u +462 
P7(u) = 92842u7+ 230230u6+ 276276u5+ 2 1 2 2 1 2 ~ ~  + 1151 15u3+45045u2+ 1 2 0 1 2 ~  + 1716 
P,(u)  = 744277u8+2035800u7+2702700u6+231 1400us+ 1416870u4+ 648648u3+220220u2 

P,(u) = 6072124u'+ 18156204u8+26409024u7 + 24847200u6+ 16900380u5+ 8743644u4+ 3 4 9 0 0 3 2 ~ ~  
+51480u +6435 

+ 1 0 5 0 1 9 2 ~ ~  + 218790~  + 243 10 

Table 3. Coefficient P,(u) for the Bethe lattice (c = 6). 

~~ ~~ 

P , (u)=u2+u+l  
P2(u)  = 7u4 +8u3 +9u2+6u + 3 
P3(u) = 64u6+ 84u5 + 105u4 + 85u' + 60u2 + 30u + 10 
P4(u) = 663u8+ 984u7 + 1344u6 + 1 2 3 2 ~ '  + 1 0 0 1 ~ ~  + 644u3 + 350u2+ 140u + 35 
Ps(u) = 7391u1'+ 12235u'+ 18045us+ 18255u7+ 16350u6+ 12006u5+7770u4+4200u3+ 1890u2 

P ~ ( u )  = 86488uI2+ 157920~  l1 + 24934th lo+ 274340u9+ 265815u8+ 2 1 4 6 3 2 ~ ~  + 154737u6+96822u5 

P7(u) = 1 0 4 7 6 2 8 ~ ' ~ +  2 O 9 0 8 7 2 ~ ' ~ + 3 5 1 1 4 1 7 ~ ~ ~ + 4 1 5 9 8 8 3 ~ ~ ~  +4313O36u1O+ 3761576u9+ 2941939~'  

+630u + 126 

+53460u4+25080u3+9702u2+2772u +462 

+ 2030743u7+ 1263262u6+696696u' + 3 3 9 3 3 9 ~ ~  + 141 1 4 1 ~ '  +48048u2 + 1 2 0 1 2 ~  
+ I716 

+ 54479152u1O+ 40582880u'+ 27500265u8+ 16831880u7+ 9 3 4 1 3 3 2 ~ ~  + 4 6 3 6 6 3 2 ~ ~  
+ 2032030u4+760760u3 + 231660u2+ 5 1 4 8 0 ~  +6435 

+ 11 16835740~ '' +991014252u 1 2 +  786879612~" + 570962646ulo+ 377818438~' 
+ 229558446u8+ 127351692u7+64287132u6+ 29126916us+ 1 1639628u4+ 3 9 6 7 3 9 2 ~ ~  
+ 1093950u2+218790u+243 10 

P8(u)  = 1 3 0 2 2 6 1 5 ~ ' ~  + 28196560~ I' +50108280~~~+63440720u l 3  + 69865600~ 12+651 1 2 4 3 2 ~  

Py(u) = 165170998u1'+ 3 8 5 5 3 7 7 3 4 ~ ' ~ + 7 2 1 9 8 8 3 3 4 ~ ~ ~ + 9 7 1 1 2 3 8 4 4 ~ ' ~  + 1129719564~ '~  
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Table 4. Coefficient APn(x) for the honeycomb lattice (d = 2, c = 3). 

~~ ~ 

AB1=O 
A B z = O  
AB3 = 0 
AB4 = 0 
AhBs = 0 
b 9 6 = ( 1  +X)63X6 
AhB7= ( 1 + ~ ) ~ ( 6 3 ~ ' + 6 3 ~ ~ + 4 2 x ~ )  
AhB8=(1+x)6(828x10+ 1656x9+ 1860x8+1056x7+360x6) 
AB9 = (1 + ~ ) ~ ( 8 7 7 5 ~ ' ~ + 2 6 3 2 5 x ' '  +41850x 'O+4O446x9+ 26271xs+ 10557x7+ 2 4 4 8 ~ ~ )  

Table 5. Coefficient AP,(u) for the diamond lattice (d  = 3, c = 4). 

A P 1 = O  
AP,=o 
AP3=0 
AP4=0 
M,=O 
u 6 = 1 2 u 6  
AP7= 336 u7+ 168 u6 
AP8=5976 us+5568 u7+2440 u6 
AP9 = 86490 u 9  + 1143 18 U'+  55080 u7 + 9792 u6 

Table 6. Coefficient @,,(U) for the simple quadratic lattice (d = 2, c = 4). 

AP1=0 
AP2=0 
AP3=0 
AP4=4 u4 
AP5=80u5+40u4 
AP6 = 1 104 u6 + 1020 u s  + 264 U 
AP7= 13062u7+17066u6+8176u5+1456 u4 
APE= 142372 u8+236880 u7+ 160432 u6+52960 us+ 1280 u4 
AP9= 1476639 u9+2959443 u8+2549547 u 7 +  1189683 u6+303552 u5+34272 u4 

Table 7. Coefficient AP,(u) for the simple cubic lattice (d = 3, c = 6). 

AP1=o 
AP2=0 
M3=0 
U,= 12 u 8  
AP5=360u'o+120u9+120us 
AP6=7584U12+4716U"+5256U'o+1584 u9+792 U 8  

~7=138194u'4+122486u'3+150584u'2+77952u"+48048 ~ ' ~ + 1 3 1 0 4 ~ ~ + 4 3 6 8 u ~  
APE= 2332292 u16+2648272 u"+3557616 ul4+2455808 uI3+ 1763704 ul2+78576O U'' 

+ 3 5 2 8 0 0 ~ ' ~ + 8 7 3 6 0  u9+21840 u8 

+ 15935400 ul2+6257O88 u"+2276640 ~ ' ~ + 5 1 4 0 8 0  u9+102816 u8 
M9 = 37591191 U"+ 51646923 U 1 7 +  75192597 u16+62934957 U "+51030054 ul4+293l5790 U l 3  
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Table 8. Coefficient AP.(u) for the triangular lattice (d = 2, c = 6). 

A P 1 = O  
0 2 = 0  
0 3 = 6 u 6  
hP4=144u8+6Ou7+48u6 
AP,= 2535 U"+ 1935 u9+ 1920 u8+660 u7+270 u6 
APa=39708 ul2+4257O u"+49428 u1O+28584 u9+16200 u8+4752 u7+1320 u6 
AP,=587601 u14+796971 u13+1048698 u"+799078 u"+557200 u10+263536 u9+110838 U* 

+28392 u7+6006 u6 
U,= 8428968 u16+ 13676808 ul5+1997934O u14+18318656 U"+ 14865208 ~ '*+9031176 U''  

+4822544 U''+ 1950592 u9+672000 u 8 +  152880 u7+26208 u6 
AP,= 118754268 uI8+2226218O4 uI7+35579736O ~ ' ~ + 3 7 4 7 7 7 0 2 8  u15+342776394 u I 4  

+246308040 u13+ 155214207 u"f79801335 u"+35666541 U''+ 12698235 u 9  
+3767472 u8+771 120 u 7 +  I 1  1384 u 6  

I @ ,  H)/tanh PH with respect to the variables w = (1 - x)/cosh2PH and x indepen- 
dently are positive at all orders: 

(7.1) 

When c is even, the property holds for w = (1 -x2)/cosh PH as well as for w = 
(1 -x)/cosh*pH, The derivatives will clearly keep their sign in the range 

1-x 
O S X G l  O S w S 7  

COS ?eo (7.2) 

where the series (6.10) converges. 

Lee-Yang angle can be bounded from above. 
Another consequence of the positivity properties of the coefficients is that the 

Using equations (5.6) and (5.7): 

[$(1-x)l'S,(O)= (1 -X)'cL,(O) c odd 
(7.3) i [$(1 -x2)]'P,(0) = (1 -x2)'p1(0) c even. 

cL1 ( x )  a 

But ~ ~ ( 0 )  is easily obtained from (3.3): 

cL'(o)=--( 1 1 21 ) 
2 4 '  1 * 

(7.4) 

We obtain an upper bound for the radius of convergence of the series (5.10), i.e. a lower 
bound for cos2iBo. 

For c odd we have: 

The 1 + 00 limit is easily derived and gets: 

cos2ieo > 1 - X .  

cos2$eo > 1 - x , 

For c even we get similarly: 
2 

(7.6) 
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i.e. in the c even case, eo is less than the corresponding angle in the one-dimensional 
(c = 2) case. Such a bound is better at low temperature that the bound given in § 3.1. 

Similar considerations also lead to the following result. If the inequalities (7.1) 
are true, the radius of convergence of the series expansion of I ( p ,  H)/tanh PH in 
powers of the variable w, will be a monotonically decreasing function of x .  Thus 
C O S * ( ~ ~ ( X ) / ~ ) / ( ~  -x )  is a monotonically increasing function of x. 

(ii) If we compare polynomials corresponding to the same value c, and different 
dimension d, each coefficient appears to be an increasing function of the dimension d. 
The Bethe lattice enters into this scheme as the infinite-dimensional case. 

If we compare polynomials corresponding to different c (having the same parity) the 
coefficients seem to be increasing function of c (for any dimensions considered here). 

Since d and c are insufficient to characterize the lattice, some care must be taken in 
trying to generalize this observation. Moreover, continuation in c or d (at fixed d or c) 
is hard to define. However, if our assertions are true at any order in the expansion, we 
can deduce in the c even case that the corresponding Lee-Yang angle will be at constant 
c a decreasing function of the dimension and a decreasing function of c, because 
1/cos2$80 is the radius of convergence of the series (5.10). As an example we have for 
c = 4  

&(Bethe) < &(diamond, d = 3 )  < @,(square, d = 2). (7.7) 

This gives the corresponding inequalities for the critical temperatures: 

T,(square) C T,(diamond) S T,(Bethe). (7.8) 

These following inequalities are known to be true (Domb 1974) 

xdsquare) = fi- 1 = 0.4142 x,(diamond) = 0.4773 x,(Bethe) = $. (7.9) 

We have not compared different lattices having same c and same d .  (For example the 
honeycomb lattice and the so called 4-8 lattice discussed by Domb (1960, p 219) both 
have c = 3, d = 2.) Such an investigation would be interesting and in any case a counting 
method should be set up for the expansion in the parameter u ( l  - x )  or u(l  - x 2 )  in 
order to verify our observations at all orders. 

Finally we want to report another numerical observation concerning the positivity of 
the Mayer-Yvon coefficients themselves, and the location of their zeros. 

For the Bethe lattices n (c - 2) + 2 zeros of A,, ( x )  are at the origin, the other zeros 
form n opposite pairs (for the variable x )  lying in the real intervals defined by 
xf < x 2  < 1, with x, = 1-2/c. Furthermore these zeros interlace when 1 increases. 

For the other lattices we observe a similar phenomenon: the first set of n (c - 2) + 2 
zeros splits into n (c - 2) + 2 - 2L zeros remaining at the origin, and L pairs of opposites 
(real or complex) slightly shifted from the origin but such that Re  x 2  < 0. The second set 
of 1 pairs of zeros remains real, and lies in the same interval as in the case of the Bethe 
lattice. 

A consequence of the location of zeros is that for any lattice A,, (x) appears (at least 
up to the highest-order considered) to keep a constant positive sign in the whole interval 
(0, x,) where x, is the critical temperature of the Bethe lattice having same coordination 
number. 

The expansion (2.12) has therefore also positivity properties in the low temperature 
region. 
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8. Conclusions 

The Lee-Yang representation for the Ising model is known to have important conse- 
quences for the analyticity property of the solution. We have shown that its positivity 
property also has a strong influence on the coefficients of the various expansions, as well 
as on the critical behaviour. 

Therefore we believe that a constructive approximation (i.e. a set of approximations 
giving exact bounds) to the solution of the Ising model may be deduced from approxi- 
mations on the measure itself. Such a programme would allow the greatest number of 
deductions to be made from the knowledge of a large (but finite!) number of coefficients 
of the expansion. 

The situation has some similarity with elementary particle physics: the Lee-Yang 
representation plays the role of the dispersion relations, the measure is equivalent to the 
so called absorptive part of the scattering amplitudes and the spontaneous magnetiza- 
tion is similar to the total cross section. Consideration of the positivity properties of the 
absorptive part is known to have greatly increased the exact known properties of the 
amplitudes in particle physics (Martin 1969). 

Finally we want to point out that the linear transformations we performed on the 
moments (which is the so called de la Vallie Poussin transformation) can be generalized 
to include more information coming from the knowledge of the type of singularity 
associated with the intensity of magnetization in the z variable at the ends of the arc of 
the Lee-Yang circle. 

Such an approach with a more sophisticated (Gronwall 1932) method could be very 
valuable and will be investigated in the future. 

More generally, it seems to us, that the impact of the renormalization group 
approach on the Lee-Yang measure or, vice versa, the influence of such a positive 
measure on the renormalization procedure, could be investigated with much profit. 
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